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Abstract—A new thermodynamics of open thermochemical systems and a variational principle of virtual
dissipation are applied to the finite deformation of a solid coupled to thermomolecular diffusion and
chemical reactions. A variational derivation is obtained of the field differential equations as well as
Lagrangian equations with generalized coordinates. New formulas for the affinity and a new definition of
the chemical potential are presented. An outline is given of an unusually large field of applications, such as
active transport in biological systems, finite element methods, plastic properties as analogous to chemical
reactions, phase changes and recrystalization, porous solids, heredity and initially stressed solids. A new
and unified insight is thus provided in highly diversified problems.

1. INTRODUCTION
The variational Lagrangian thermodynamics formulated initially in 1954-55[1, 2] was extended
more recently to nonlinear thermorheology[3]. At the same time a new approach to the
thermochemistry of open systems was developed [4-6] which provides a new foundation of
classical thermodynamics and avoids the traditional difficulties and ambiguities of Gibbs’
classical treatment[7].

This paper is an application of this new thermodynamics to the problem of finite deformation
of a solid, with substances in solution, subject to chemical reactions and thermomolecular
diffusion. Two special cases of this problem have been developed earlier. One of these excludes
chemical reactions and is presented in the context of the similar problem f8r porous solids[8].
The other includes chemical reactions but assumes small perturbations of a solid in the vicinity
of a state of equilibrium with initial stress[9].

The basic concepts of the new thermodynamics of open systems such as the thermobaric
potential are briefly recalled in Section 2. Their application to chemical reactions and a new
expression for the affinity are developed in Section 3 along the lines developed earlier [4-6]. This is
applied in Section 4 to an open solid undergoing homogeneous deformations while coupled
chemical reactions are occurring internally. The analogy with nonlinear thermoviscoelasticity is
pointed out.

The basic variational principle of virtual dissipation is formulated in Section 5 in the context
of a deformable solid continuum with thermomolecular diffusion and chemical reactions. The
differential field equations which govern the evolution of the continuum are derived variation-
ally in Section 6.

The foregoing resuits are based entirely on classical thermodynamics. As shown in Section
7, two additional axioms, one of which involves Nernst’s third principle, lead to a new definition
of the chemical potential which bypasses the need of introducing the principles of quantum
statistics. A complementary form of the field equations are then derived in Section 8.

Application of the principle of virtual dissipation in Section 9 to a system described by
generalized coordinates as unknowns, leads directly to Lagrangian equations for those un-
knowns without recourse to the field equations. In. Section 10 it is pointed out how the
Lagrangian approach is particularly suited to the analysis of biological systems as already
illustrated for the treatment of active transport in biological membranes[6]. Section 11 recalls
that Lagrangian methods provide the foundation of a large variety of finite element methods.
The analogy between plasticity and chemical reactions from the standpoint of internal coor-
dinates is brought to light in Section 12. How the problems of creep and recrystalization under
stress coupled to phase changes may be treated by the present methods is briefly discussed in

85 Vol. 14, No. 11—A 881



882 M. A. Biot

Section 13. Earlier treatments of porous solids, the thermodynamics of heredity and the solid
under initial stress are recalled in Sections 14-16. The case of a solid under initial stress is not
treated as a bifurcation and thereby is more general since it is not necessary to assume the
existence of an unstressed state.

2. NEW THERMODYNAMICS OF AN OPEN CELL

A new approach to the thermodynamics of open systems has been introduced and discussed
extensively in some earlier publications [4-6}. The development has been accomplished entirely
within the framework of classical procedures and without recourse to the principles of
statistical mechanics. The results are directly applicable to a deformable solid with pure
substances in solution as aiready described in the similar case of a porous solid saturated by
viscous fluids[8]. We shall briefly rederive here the essential concepts by using a slightly
different and more direct approach.

We start by considering a cell C, called a primary cell, which is first assumed rigid,
containing a mixture of substances k at the temperature T. To this cell we adjoin large rigid
reservoirs Cy called supply cells, each containing a pure substance k at the pressure and
temperature p,T, the same for all supply cells. It was shown that this condition of uniform
values po and Ty, for Cy is required in order to avoid Gibbs’ paradox(4, 5}. We also adjoin to
this system a large isothermal rigid reservoir at the temperature T, called a thermal well, TW.
The total system C, +Z* Cy + TW is called a hypersystem while the subsystem C, +=* Cy
will be referred to as a collective system.

We have considered reversible transformations of this hypersystem whereby masses and
heat are transferred within the system by performing external work on the system. This implies
the use of reversible heat pumps. The supply cells C,; and the thermal well are assumed large
enough so that p, and T, remain constant in the process.

The increase of internal energy # of the hypersystem from a given initial state defines what
we have called the collective potential of the primary cell C,. The justification for this definition
is derived from the fact that # is determined completely by the state variables of C,. This can
be seen as follows.

We shall first consider the case where the primary cell is rigid and contains a mixture of non
reacting pure substances k at the temperature T. The cell C, may be a solid in which the
various substances are in solution. The case of reacting substances is considered in the next
section.

The mass m, of each substance in C, is written

my = Mo +M* b

where mq is the initial mass and M* is the mass of each of the substances acquired by the open
cell during a transformation. The state variables of C, are the masses M*, and the temperature
T. Since the masses M* are assumed to be provided entirely by the supply cells Cy, the same
variables M* are also the state variables of the supply cells. Therefore the state of the collective

k
system C, +Z Cy is determined completely by the variables M* and T. As a consequence the

k
increase of collective energy % and of collective entropy & of the system C, +2 C,, may be
expressed as functions of M* and T. We write

YU = UM*T)
& = PM-T). 2.2

We have defined the collective potential # as the increase of energy of the hypersystem
k
Cp +Z Cy + TW in the reversible transformation. Its value is

F=U+H, 2.3)

where H, is the heat energy acquired by the thermal well. Since the transformation is reversible
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k
there is no entropy change of the hypersystem, C, + X Cu + TW, hence

= _Ho
g= T, (2.4)
and
F=U~Tp& (2.5)

Since % and & are functions of the state variables M* and T of the primary cell the collective
potential § is also determined by the same variables.

F=3$M"T) (2.6)

Because of these properties we may drop the term collective and refer to A, & and $ respectively
as the cell energy, the cell entropy and the cell potential, keeping in mind of course that they are
defined here in a new way as collective concepts.
The thermodynamic function (2.5) was introduced as a fundamental potential by the author
{1,2] in a more restricted context and applied by Mindlin to piezoelectric crystals[10].
According to eqn (2.1)

M* = my ~ my. @n
Hence we may write
U=Um,T), I=Fm.T), F=Fm.T) 2.8)

as functions of the temperature and the total masses m, of the substances k in solution in the
cell.

In order to evaluate the changes of the thermodynamic functions ¥, &, # associated with a
change of state of the open cell C, we have introduced the new key concept of thermobaric
transfer {4-6] described as follows. Consider a pure substance k in equilibrium with the primary
cell C, through a semipermeable membrane. In this equilibrium state the substance k is at a
pressure p; and at the same temperature T as C. The pressure p; of the substance under these
conditions is called the partial pressure of the substance in the mixture. The process of
thermobaric transfer of a mass dM* from the supply cell Cy to the primary cell C, is a
reversible process by which the mass is first extracted from the supply cell, compressed and
heated to the partial pressure p, and temperature T and then injected reversibly and adiabatic-
ally through the semi-permeable membrane. The heating along this path is accomplished by a
reversible pump operating between TW and dM* and injecting a differential amount of heat
into dM* at each step. The process is described in more detail in Refs. [4, 5].

k
The increase of collective energy and entropy of the system C, + X Cy in this process of
thermobaric transfer are written

da = Eg dM' k
d¥ = § dM* 29
where
T T
& = dfk fk = dfk. (2.10)
poTo peTo

The differential d§; is the increment of entropy per unit mass of substance k at each step of
the thermobaric transfer. Similarly

dé =92k, 7 45, =d(-‘-’~§)—pkd(-‘-‘) +T'd5, @.11)
Pk Pk p
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is the increment of enthalpy per unit mass of each substance at each step, at the variable
pressure pi variable density pi and variable temperature T’ along the path of integration.

The variables & and 5, are independent of the path of integration and have been called
respectively the relative specific enthalpy and entropy of the substance in C,. In contrast with
traditional procedures these definitions do not involve any undetermined constants.

The change in cell potential corresponding to the thermobaric transfer is according to (2.5)

df =dU - Tod¥. (2.12)
Substitution of the values (2.9) vields
df = ¢ dM* (2.13)
where
W = & — Tody (2.14)

has been called the thermobaric potential.

From the definition of § we note that ¢ represents the external work required for the
thermobaric transfer of a unit mass of the particular substance. This may be verified by
introducing the values (2.10) of & and §i and putting 6’ = T’ — T,. We obtain

e[ (Bheoras,). @19

oTo \ Pk
The first term represents the work of the pressure on the unit mass including the negative work
of extraction from the supply cell and the positive work of injection into C,. The second term
0 d3. is the work of the heat pump at each step along the path. Hence ¢ is effectively the
external reversible work required in the thermobaric transfer.
If several masses are injected we write

d¥ = zk‘, e AM*, (2.16)

we have assumed that no additional heat is added to C, during the reversible injection of the
mass dM*. Consider now that by using a heat pump operating between C, and TW we inject
reversibly into C, an amount of heat T dsr at the same time as the masses dM*. We obtain

k
du = & dM* + T dsr .17

k
d¥ =, 5 dM* +dsr. (2.18)
Substitution in expression (2.12) yields the increase of cell potential.
k
dg =2 ¢ dM* + 6 dst (2.19)
where

6=T-T. (2.20)

Again here we recognize the work 6 dsr accomplished by the heat pump to inject the heat
T dsr into C, operating between the temperatures Tp and T.
The variable dsr is not a state variable. Elimination of dsr between eqn (2.19) and egn (2.18)
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yields

df = i & dM* +0dY 2.21)
where

& =ty — 65, = & — T5, 2.22)

was introduced earlier as the convective potential.

We may obtain the value of # by integrating (2.19) along any convenient path. For example
we first integrate at constant temperature T = T, then closing the cell (AM* = 0) we raise the
temperature to T. This yields -

F=JM-T). 2.23)
The same path of integration may be used to integrate eqn (2.18) for d¥. We derive
¥ =PM.T). (2.24)

We note that along the path of integration the partial pressures p; which appear in the
differential coefficients are assumed to be known as functions of M* and T. By eliminating T
between eqns (2.23) and (2.24) we derive

§ = $(M"9). 2.25)

3. NEW CHEMICAL THERMODYNAMICS OF AN OPEN CELL

The new concepts and results for open systems also lead to a new chemical thermodynamics (4,
5] which we shall briefly outline.

These fundamental results are obtained without the use of statistical mechanics. We
consider again a rigid and open primary cell C, with its adjoined supply cells Cy; and its thermal
well TW. A chemical reaction may now take place between the various substance mixed in C,.
This chemical reaction is represented by the equation

k
dmy = D n d¢ G.1)

where ¢ is the reaction coordinate, and dm;, are the masses of the various substances
“produced™ by the reaction. The term “produced” is understood in a generalized sense so that
negative values represent substances disappearing in the reaction. Conservation of mass implies
the relation

k

> dm, =0 (3.2)

hence
k
> wn=0 (3.3)

Since a chemical reaction is generally irreversible and associated with an entropy production, in
order to evaluate the collective potential by the procedures outlined above, we must construct a
system such that the change of state resulting from the chemical reaction may be obtained by
an equivalent reversible process.

Such a process may be described as follows. Consider the reaction to occur in a rigid closed
adiabatic cell. The reaction d¢ produces a change of composition and temperature of the cell
from state (1) to state (2). In order to accomplish the same change of state reversibly we first
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bring the cell to an intermediate state (1) where the reaction is in equilibrium. This is obtained
by using thermobaric transfers and heat pumps, while freezing the reaction. At equilibrium we
allow the reaction d¢ to occur thus reaching the state (2'). We then bring the cell to the final
state (2) again using thermobaric transfers and heat pumps.

It is important to note that during this reversible process the state of the supply cells is the
same in the initial and final state since the masses extracted during one part of the process are
restituted during the other. Hence the change in the collective system is the same as due to a
reaction in the primary cell alone.

The work accomplished on the hypersystem during this process is the increase d #., of cell
potential. We may write

dfcn =dUep — TodFen 34
where d4, is the increase of internal energy and d¥., the increase of entropy as defined above
in terms of collective concepts. However when the change occurs in the adiabatic closed cell as
a chemical reaction, d¥/, = 0. Hence

dfcb = “’Tﬂ dyc& 3.5

where d¥., may be interpreted as the entropy “produced” by the reaction.
Following De Donder[11] the affinity A is defined by the relation

=4
d¥s = T d& (3.6)
Hence

Ao =-TAdE .7

In the case of chemical equilibrium d% = A =0.
On the other hand for an open cell without chemical reaction we denote by d§’ and d¥' the
values (2.18) and (2.19) found previously. We write

k
dF =2 d dM* + 8 dsr
k
d9' =, 5 dM* +dsr. (3.8)
When adding a chemical reaction we find
3 TO £ k
49 =dg'+dFa =~ AdE+ 2 b dM* + 6 dsr
A k
dY =49 +d. =ng+2 5 dM* +dsr. (3.9
Elimination of dsr between these two equations yields

k
df =-Adé+2 ¢ AM* +0d¥. (3.10)

Note that the internal energy does not depend on d¢ since for a closed adisbatic cell no energy is
provided to the cell (AM* = dsr = 0). Hence eqn (2.17) remains valid, i.e.

d”ll'—'—i&k dM* + T dsr. (3.11)
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Based on these collective concepts and eqns (3.9) we have derived new expression for the
heat of reaction and the affinity [4-6). We shall briefly outline this derivation.

We consider a hypersystem constituted by two rigid cells C, C,, and a thermal well TW. The
cell C, is the primary cell and C,, is a cell of composition and temperature such that the
chemical reaction considered is in equilibrium. We assume a reaction d¢ to occur in C, while
the reverse reaction —d¢ occurs in C,,. As the reaction proceeds we remove the products
dmy = v, d¢ from C, and inject them by thermobaric transfer into C,,.- Using a heat pump we
inject into C, the amount of heat ji,r df required to maintain its temperature constant. The
temperature of C,, is also maintained constant by injecting the amount of heat — h %% d¢. The
composition and temperature hence also the pressure of the cells C, and C,., do not vary.

The supply cells remain unchanged since they are not involved in the process just described.
If we denote by d¥ and d¥* the change of energy of C, and C,, respectively, we may write

dU +d¥“ =0 (3.12)

since this is a consequence of the fact that no change occurs in the collective system
. k
C, + Cey + 2 Cyu. Applying eqn (3.11) with dM* = — 5, d¢ we obtain

d% = —i widyx A€ + hyr d
k

AU, =D, néP de - hik de (3.13)

where €;? is the relative specific enthalpy of each substance in C,,. We substitute these values
in eqn (3.12) taking into account the relation

T _
§—EF = _{ dé& (3.14
PragTeq
where pi., and T, are the partial pressures and temperature in C,.,. We derive
- - i T
hor —hph =2, w f . dé. (3.15)
&g

Pheq

In this expression, obtained earlier[4, 51, k,r is a new concept called intrinsic heat of reaction. It
is obtained by removing the products as the reaction proceeds at constant temperature. It is
more representative of the chemical energy than the traditional concept which includes the heat
of mixing as defined earlier [4, 5]. We may write (3.15) in differential form as

- k
diyr = 2w dé (3.16)
which generalizes completely and rigorously Kirchhoff’s classical result for the heat of
reaction[12]. K
Consider now the entropy change of the collective system C, + C,, + 3 Cu. The changes due

to C, and C,, are respectively d¥ and d¥,,. Since the collective system does not change we
write

dF +dFe =0. 3.7

Apply the second of eqns (3.9), we write
dS’=-‘%d§-—i e d§+f‘§,1dg

AdF e = i nsf df-—%.ﬁdf. (3.18)
q
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In the second equation, A = (), since the reaction is in equilibrium. The relative specific entropy
in C,q is denoted by §°. We may write the relation

Si—35§39 =J. ds;. (3.19)
Taking into account this relation after substituting the values (3.18) into eqn (3.17) we derive

4-3n

PregTeq

[ g

ds + -';.&— %.1 (320)
e

This is the new exgression for the affinity already obtained in earlier work[4, 5]
Elimination of h,r between eqns (3.15) and (3.20) yields

k -
A=-2 ngi+ i (7=-1) (3.21)
eq
where
T
b= f (dé = T’ dsp). (3.22)
PreqTeq

The value (3.21) of the affinity is a rigorous consequence of classical thermodynamics. We shall
see below (Section 7) by the use of additional axioms how another expression may be derived
in more familiar form.

When several reactions occur in the primary cell C, the mass dm, of a particular substance
produced by the reactions is

dmy = 2 Vip d§, (3.23)

where £, are the coordinates of the various reactions. Adding the effects of each reaction in
eqns (3.9) we obtain

d}s-——T- A, dE + 2, dn dM* + 0 dsT
l k
a9=135 A, 05+ 2 5 dM* +dsr (3.24)

where A, is the affinity for each reaction.
Elimination of dst between these two equations yields

k
49 =-3 A, de,+D b dM* +0 9. (3.25)

In these expressions the state variables are £, M* and &. The masses M* added by convection

are considered as distinct and independent from those dm, =§ w, d€, produced by the
reactions and which depend only on the chemical coordinates ¢,.

4. THERMOMECHANICS AND CHEMICAL KINETICS OF AN OPEN DEFORMABLE CELL

In the foregoing analysis we have assumed the primary cell to be rigid. We shall now
consider the cell to be deformable. In the initial state let it be a cube of unit size oriented along
the coordinate axes x. It may be an open cell containing masses m; of pure substances in
solution at uniform temperature T. The state variables of this cell may be chosen to be the
reaction coordinates £, the masses M* added by convection, the entropy ¥ and six strain
components ¢;. In this section we consider the strain to be homogeneous.
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There are various ways of measuring the finite strain which have been the object of
numerous discussions and applications by the author. We shall briefly recall the essential
concepts.

The homogeneous deformation and solid rotation of the unit cube are represented by the
affine transformation

L=+ ap)x 4.1

where x; and £; are the coordinates of material points before and after deformation.
Strain components may be defined in various ways. Green’s tensor is

1 1
€= i(a;; + ag) + 50;; * &g (4.2

We may also use a definition introduced in 1939 by the author which avoids many of the
difficulties attached to Green's tensor in applications and was developed extensively in a
monograph[13]. In this definition we first perform an affinine transformation

L=+ e)x 4.3)
putting ¢; = ¢; followed by a solid rotation such that the total transformation is equivalent to

(4.1). The six independent values of ¢; define the strain. They are functions of a;. To the second
order we derive

€ = &+ (4.4)
with

1
=3l - @ut i - 0y Ou - W)

1
&= i(du + aﬂ), ;= %(ﬂq - a,,-). (4.5)

Other similar definitions of ¢; may be used which are non tensorial. For example in two
dimensions we may write

E=(l+e)xi+2€nrs H=(14+en)x 4.6)

and use €;; €, €5 as measure of the finite strain. To the second order their values were shown to
be[14]

1
€¢g = 011""2’031

€ =an “%511(2&2 +ay)
1 1
€= E(au +axn)+ '2'021(022 -ay). @

When using the general notation ¢; for this case, we put e = 0. A large number of variations of this
type of definition are possibie in two and three dimensions as indicated{14]. The components thus
defined are nontensorial but in many problems this is an advantage as illustrated by the derived
nontensorial concept of slide modulus{13, 14]. The deeper reason for this usefulness is due to the
fact that the local representation of stress and strain may be tailored to the physical anisotropy
whether intrinsic or induced by the presence of initial stresses.
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The notation ¢; for the strain used hereafter includes any of the various definitions of strain
described above. The corresponding stress components is defined by virtual work, so that

TB¢; 4.8)

represents the virtual work associated with the virtual deformation de;. We omit the summation
sign although e; is not necessarily a tensor, with the understanding that the summation is
extended to all six independent variables ¢

According to the definition of # its differential in the case of a deformable cell is obtained
by simply adding the external work Tj; de; performed by the stresses T; under the conditions
d¢ = dM* = dsr = 0. By adding this term to the values (3.25) of d.§ we obtain

k
dg =T, de; —% ﬁ: A dE,+ Y ¢ AM* + 6 dsr. 4.9)
The vaiue of d¥ remains the same as (3.24)

l k
49 =+ 3 A, dty+ D5 dM* +dsr (4.10)

Elimination of dsr between (4.19) and (4.10) yields

k

d}=ﬂ,de;,—iA,d§,+2¢ng“+0d9’. (@.11)

We note that according to éqns (2.10), (2.15), (2.22) and (3.21) the quantities &, 5, ¢, ¢« and A,
are functions of the partial pressures p, and the temperature T. In turn p, is a function of T, ¢;
and the masses m, of each substance in solution. This mass is given by

me = moe + M* + 3 nk, (4.12)

where mq; is the initial value of m,. Hence &, 5, s, ¢« and A, may be expressed as functions
of ¢ T, M* and ¢,

The values of # and ¥ may be conveniently obtained by integrating (4.9) and (4.10) first at
constant temperature T, then heating the cell to the temperature T maintaining constant the
values ¢;, £ and M*. We obtain

F=SHew & MA T)

& =Sy & M*, T). (4.13)
Elimination of T between these two relations yields

F=Jep b M", ) 4.14)

where § is now a known function of ¢, £, M* and &.
From the differential (4.11) we derive

2.1, M=o H-o 4.15)

and a fourth one which plays a special role

Mg—A

3 > 4.16)
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We denote by Q; the quantities Ty, ¢, and 8 and by g; the corresponding variables ¢;, M* and
&. Equations (4.15) are then written
2_o 4
2 Q. 417

The quantities Q; may be considered as mixed mechanical thermodynamic driving forces which
are known functions of time imposed by the environment.

Equations (4.16) and (4.17) are not sufficient to determine the unknown variables g; and £,
because A, is not known. The additional relations are provided by chemical kinetics by which
reaction rates are given as (the dot denotes a time derivative),

£, = f(€ my T). (4.18)
This may be expressed in terms of €; £, M* and & using the value (4.12) of m, and writing
T = T(e, & MY, P) 4.19)
obtained by solving for T the value (4.13) of &. The rates of reaction become
& = folew & M ). (4.20)
Equations (4.17) and (4.20) now constitute a complete system for the chemical kinetics of the
deformable open cell.
We may write these equations in a form which corresponds to a general Lagrangian

formulation of irreversible thermodynamic systems. As already pointed out, the affinity is a
function of the partial pressures and the temperature

A=A T). .21
Since p; is a function of € m,, T using eqns (4.12) and (4.19) we write
A, = Aen & ML ). 4.22)
Elimination of £, between eqns (4.20) and (4.22) yields
A, =Ro(ei & MN F) 4.23)
where the affinity is now expressed in terms of reaction rates £, by what we have called a rate

function [4-6], R,.
Introducing into (4.16) the value (4.23) of A, we obtain the system of differential equations

#og

aq;
[ - ;
%, +R,=0 4.24)

which govern the time evolution of the open deformable cell. These equations are now in the
Lagrangian form introduced by the author. A particular case of interest is obtained by assuming
that the system, while nonlinear and irreversible, is never very far from equilibrium. For such a
quasi-irreversible system Onsager’s principle[15, 16] applies to the chemical reactions.

This is expressed by writing the rate functions in the form

&, =§g (4.25)
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where

D =35 bolen M*, Dk (4.26)

is a positive quadratic form in £ with coefficients dependent on the state of the system.
Equations (4.24) are now

5 _
;%—Q

3§ D
=g =0 427

For a closed cell (M* =0) these equations are the same as obtained in the analysis of
nonlinear thermoviscoelasticity where the role of internal coordinates is played by the chemical
variables &, [3].

5. PRINCIPLE OF VIRTUAL DISSIPATION FOR CONTINUOUS SYSTEMS
We may consider a coatinuum as a collection of infinitesimal primary cells. An important
property of the collective potential is its additivity. Hence the collective potential of a
continuum may be written

V= f 40 6.1
1]

where () is the domain befpre deformation and § is the cell potential per unit initial volume.
The elementary initial volume is dQ = dx, dx,dx; with initial coordinates x;. Similarly the
collective energy and entropy are

U= f ¥ dQ
o
S= fny dQ. (5.2)
Because of eqn (2.5) we may write
V=U-T. (5.3)

We also assume that the continuum is subject to a potential force field such as gravity. The
potential field per unit mass is a function 9(;:) of the coordinates. If we call p the mass per unit
initial volume at a displaced point £; the mechanical potential energy of the continuum is

G= f pY(x;) dQ. 54
o

We define
P=V+G (5.5)

as a mixed collective potential which embodies mixed mechanical and thermodynamic proper-
ties.

We now consider the continuum to yndergo a completely general transformation which may
be irreversible. With a virtual infinitesimal transformation we may write d’Alemberts principle
as

S 18q+ U +8G = 6W (5.6)
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where §W is the virtual work of external forces in addition to the potential forces and iI,&q.-
the virtual work of the inertia forces with generalized inertia forces I, corresponding to
generalized coordinates g;. The variables must of course be varied subject to certain constraints
which we shall specify. Elimination of U between eqns (5.3) and (5.6) yields

2 I8q; + 8P + TobS = 5W. (L))

Consider now that there is no variational flow of matter or heat across the boundary of Q. In
this case 8S represents the entropy produced in ). To indicate this we write S* instead of S
and eqn (5.7) becomes

S Igi + 8P + TodS* = 6W, (58)

The term T,8S* represents a virtual dissipation and eqn (5.8) is the general form of the principle
of virtual dissipation [3] generalizing d’Alembert’s principle to irreversible thermodynamic
systems.

The principle may be written in an alternate form particularly useful for continuous systems
as follows. It was shown earlier[3] that we may write

5P + ToS* = 5:P + fn Tés* dQ) 59

where 8s* is the entropy produced and T8s* is the virtual dissipation, both per unit initial
volume.
The term 8P is

0r®P = fn [6rF +6(p®)] AQ2 (5.10)

where 8z denotes a variation obtained by excluding the variation 8s* of entropy produced. The
principle of virtual dissipation (5.8) thus becomes[3].

3 I,aq,.+s,.9+fn Tos* dQ = 5W. 5.11)

Note that T is the local temperature. We have called Tés* the intrinsic dissipation.

We must now define the variables to be varied and the constraints which they must obey.
One of the variables is the field of displacements u; of the solid. The new coordinates become
% = x; + u;. Another field is the mass displacement vector M* of each substance relative to the
solid. It is defined as the total mass which has flowed across a material area initially
perpendicular to the x; axis and initially equal to unity. It obviously satisfies the mass
conservation constraint

oM}
ax; -’

M:= 5.12)

Summation signs are omitted for tensorial quantities.
An equation of entropy balance is also obtained by considering the rate of increase of
entropy in an arbitrary domain {)'. It may be written

* k
j Fdq = f (s';n+-’1-)dﬂ'— f S 5.M*n; dA'. (5.13)
o o T A

In this equation, ) is the rate of the heat acquired per unit initial volume of (', §nr is the rate
of entropy produced per unit initial volume which is not due to pure thermal conduction and
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5iMF is the rate of convected entropy per unit area of the initial boundary A’. We write
3H;

h= = (5.14)

where H; is the rate of heat flow per unit initial area across a face initially perpendicular to x;.
By integration by parts eqn (5.13) may be transformed to

o .,_g§}_) ,
[ goo=[ (s+-2)an (5.15)
where
s'*=s'}v1—-¥~i%£ (5.16)

K
Si= ZﬁM«“ +87

v _ Hi
Si T ¢.17
The domain ()’ being arbitrary the integral (5.15) implies
. _Qi
& =4* " (5.18)

This generalizes Meixner’s resuit(17] which is restricted to thermal flow. Time integration with
zero initial values yields

P =s*+s (5.19)
where
=95
s= P (5.20)

is the entropy supplied. The vector S; is the total entropy displacement due to convection and
conduction. Relation (5.19) expresses the basic entropy balance, while relation (5.20) is a
holonomic constraint analogous to (5.12) for the masses. The rate of entropy production §* per
unit initial volume (5.16) may also be written

§* = §nr+ M STST (5.21)

where A; is the thermal resistivity tensor of a deformed element of solid, relating H; and 4T}ax;.
The variables 4, M, S;, s* and ¢, completely define the state of the deformable solid with
thermomolecular diffusion and chemical reactions.
The strain components ¢; may be chosen according to any of the particular definitions
described in Section 4. They may be tensorial or non tensorial functions of a;. we write

€ = €;(auy) (5.22)

with the property of invariance under a rigid rotation. For a non homogeneous deformation ay
are the gradients.

au

= e (5.23)

ai;
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The total rate of intrinsic dissipation per unit initial volume is the positive definite expression
Ts*=3 R, +29 (5.24)
where &, is the rate function defined by (4.23) and 9 is a dissipation function
=13 conngt + it + 1SS, (525)
2 2

which is a quadratic function of M and S; with coefficients dependent on the local state. This
quadratic form represents thermomolecular diffusion with the local validity of Onsager's
principle[15, 16]. The coefficients C}; represent the coupling between mass and entropy flow
including entropy convection.

The virtual dissipation is immediately derived from these results. It is written

ms*—ﬁge d§,+2m-p8M" ggas (5.26)

6. VARIATIONAL DERIVATION OF FIELD EQUATIONS FOR COUPLED THERMOMOLECULAR
DIFFUSION AND CHEMICAL REACTIONS IN A DEFORMABLE SOLID CONTINUUM

We consider a deformable solid which undergoes a deformation described by the material
displacement field ;. The coupled thermomolecular diffusion relative to the solid is described
by the vectors S; and M. The vector S; is the entropy displacement due to conduction and
convection, while M* is the mass displacement relative to the solid of the various substances in
solution. The scalar field ¢, represents the distribution of chemical coordinates, and s* is the
entropy produced per unit initial volume. These unknown fields are to be determined as
functions of the initial coordinates x; and the time ¢.

Equations governing these fields are readily obtained by applying the principle of virtual
dissipation assuming arbitrary variations which vanish at the boundary. In this case the virtual
work of external boundary forces vanishes (6W =0) and the variational principle (5.11) is
written

2 Isgi+ fn [6rF + 8(p%) + Tos*] d2 = 0. 6.1)
The variation 8g¢ is obtained by varying only €;, M*, £ and s (excluding s*). We find
=9 0F smt+ 2 ]
¥ aﬂj&,ﬁﬁ’,;&;m +ay8s+2 af,,a‘" 6.2

According to (4.15) and (4.16) this may be written

5o = T, 22250, +3 oMt +08s - 34, dé, ©3)
aij

Since p is independent of the chemical reaction we write
k
p=(po+ M) 6.4)

where py is the initial mass per unit volume.
We derive

5[p9(x)] = Gop +p%§8u,- =4 i sM* +pg8u,’ 6.5
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hence
_ de v X k ] c
8ef + 8(p%) = T, 52250, + D adM* + P55 Bui + 605 ~ > AB¢, (6.6)
ij i
where

o= +% 6.7

defines a mixed convective potential which takes into account the body force potential 4.

Finally we consider the inertia forces. In order to avoid undue complications which do not add
significantly to the physical accuracy we introduce some simplifying assumptions. A more accurate
evaluation of the inertia forces will be found in an earlier paper dealing with fluid saturated porous
solids{8]. We shall assume that the inertia forces are due mainly to the acceleration &, and the time
derivative of the momentum pi; of the solid. Per unit initial volume the virtual work of the inertia
forces is

k
ad?(ﬂ*)ﬂua +i 2 L pdut 4z, df, df;. (6.8)

In this expression A is the domain occupied after deformation by an element of the solid
initially of unit volume, o« = m,/A is the partial density of substance k after deformation and
8ul is the virtual displacement of the substance in cartesian coordinates. It was shown that[8]

L pdut 4%, dF; dfs =§§;mf. 69)
We derive for the virtual work of the inertia forces
L _([d,. & 0% aagk
> Isq = | g+ 3> > 8M} | dQ. (6.10)
]

We now substitute the values (5.26), (6.6) and (6.10) in the principle of virtual dissipation (6.1).
From relations (5.12), (5.20) and (5.23) we derive the variations

= - —‘-9— k= __3_ k = _3_
8s ax; &S M x; SM; 801] ax; Su; (6.11)

and we integrate by parts the terms in (6.1) which contains these variations. In the final result
we cancel the factors multiplying the arbitrary variations. This yields

3 (n a9 d do 0D of,
—— —_—l Y e o = =g 2
3x1<T'" 30:;) p o%; dt (ptk), ax; + M} “ ax;’
30 9
I R 612

These equations along with (5.24) for s* namely
T5* = 2 Rk, +29 (6.13)

constitute a complete set of differential equations for the time evolution of the variables u;, M/,
Si, & and s*. The value of ¥ is determined from equation (5.19) while M* is derived from
(5.12).
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7. ADDITIONAL AXIOMS AND NEW DEFINITION OF THE CHEMICAL POTENTIAL

The thermodynamic functions derived in the foregoing analysis are based exclusively on the
axioms of classical thermodynamics. It is possible to proceed further and derive ther-
modynamic functions analogous to those associated with the axioms of quantum statistics.
However in deriving these results we may bypass completely the statistical treatment by
introducing two very simple axioms and by this process obtain a new definition of the chemical
potential.

Let us go back to expressions (3.15) and (3.20) for the affinity and the heat of reaction. We
assume that we may write

. - k ka k
Axiom (@) pr=2 w | dac+ D n&0) (7.1)
P k T
axiom®)  AE-3, f T (12)
eq [

Note that Axiom (b) implies Nernts’ third principle. The lower limit of the integrals in (7.1) and
(7.2) is the state of absolute zero and it is assumed that the integration may be performed as a
limiting process by extrapolation. We further assume that the constants of integration & (0) are
characteristic of the pure substances and independent of the chemical reactions. These
constants are considered to be derived by measuring heats of reaction for a sufficient number of
cases. In principle they may also be obtained from quantum statistics but in fact this is seldom
practical.
Substitution of the values (7.1) and (7.2) into expression (3.20) for the affinity yields

k

A== v (7.3)
where
py = €80 — Ts g (7.4)
with
T . T
@ = J; de:+&0) 5= fo dsi. (7.5)

Equation (7.3) expresses the affinity in the traditional form with a new definition (7.4) of the
chemical potential.

In the previous sections we have defined the entropy & as a coliective concept which
depends on the state of the supply cells. We may consider the particular case where the supply
cells are all in the state of absolute zero temperature and extrapolate to this case the resuits
obtained in Section 3 from classical thermobynamics. To simplify the writing consider the case
of a single reaction ¢ The entropy differential (3.9) becomes

dy=-‘;-dg+ﬁ‘, 56 AM* + dsr (7.6)

where §; has been replaced by §£** as expressed by (7.5). We may also write relation (3.20) in
the form

& h,
= nsie --T’.l. .7

~in

Substituting this value into (7.6), taking into account the relation

dmy = dM* + v, d 7.8

SS Vol. 14, No. 11—B
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we obtain

k
d¥ =2 58 dm, - ﬂ%’ d¢ +dsr. (1.9)
On the other hand we may write
k
T dsr = hpr dé + D, ™ AM* + hy; de; + C dT. (7.10)
Also by definition
_ k
hpr d§ = (hp'l' - 2 thk"') dé. (7.11)

Using relations (7.8), (7.10) and (7.11), the value (7.9) of the entropy differential becomes

'] ” hc’
dyj=i(§:" +h“?)dmk+,—r1de,,-+§fd'1'. .12)

The coeflicients 5, &™, hy and C are functions only of m,, ¢ and T. Hence integration of
(7.12) yields

F= .?(mk, €ijy T) (713)

as a function of the same variables. This expression is valid whether m; resuits from chemical
reactions or convection.

We may also derive the cell potential in terms of the chemical potential u, by writing the
convective potential as

br = ok — Mok (7.14)

where uq is the chemical potential of the substance in the supply cell. With the value (7.3) of A
and taking into account relation (7.8) we write (3.10) in the form

k
df = ﬁ)m dmy +8 4P~ D) pox dM*. (7.15)
If we assume the supply cells to be at absolute zero, this becomes
k
df =D dm +0dY - ﬁ «(0) dM*. (7.16)

Hence the value of § still depends on M* unless we neglect &(0). On the other hand if we
consider a continuum with zero variation of the total mass of each substance in the domain (),

fn SM* dQ =0 .17
we obtain for the variation of the total collective potential

8V = fn (}5 widmy + 085 d) (7.18)

This value depends only on &m, and 8.
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8. COMPLEMENTARY FORM OF THE FIELD EQUATIONS

Let us neglect the inertia term—i;d%/dx; in the field equations (6.12). Physically this means
that we neglect the effect of inertia forces on the diffusion process. The second and third equations
(6.12) become

02 _ 0D _
I = X T .-_X' 8.1
where
i 9% _ 90
X ax,’ X o 8.2

Equations (8.1) are lincar in M* and S;. They may be solved for M* and S; and the solution
may be written

W,
M, 7XF S, ax, 8.3)

where 9° is the dissipation function 9 expressed as a quadratic form in X and X; instead of
M and S, By substituting the values (8.3) into (5.12) and (5.20) we obtain

-G wmGx) &9

On the other hand the time derivation of (4.12) yields

mk=M*+ﬁ v.,£,=M'+ﬁ Vil 8.5)

where f,(e; my, T) is the rate of'reaction (4.18). Also from (5.19) and (5.24) substituting A,(e;,
m,, T) instead of R, and f, for £, we write

$=4+15 A,f,+3;§. ®.6)

Combining equations (8.4)~(8.6) and adding the first group of the field equations (6.12) we obtain

9 '_’Su) N .
8x, (T‘w aau P af; dt (pll,)

. a [9D°
== (5r)+ 2w,

F= —é(%%) +%(i Af+ 29‘). ®.7)

The entropy & as well as other variables in these equations are expressed in terms of the

unknowns u;, m; and T. The time evolution of these variables is governed by the complemen-
tary form (8.7) of the field equations(6).

9. LAGRANGIAN EQUATIONS
The principle of virtual dissipation (5.11) may be applied to derive directly Lagrangian
equations which govern the evolution of complex systems described by generalized coor-
dinates. The fields are approximated by the expressions
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= ui{(qy, Xp, 1)
M} = M} (g, x, 1)
= §i(qi X, t)
& =&l x, 1) 9.1)

where ¢; are generalized coordinates to be determined as functions of time. In a large number of
problems the entropy produced s* does not contribute significantly to the values of the state
variables. Hence in this case suitably chosen generalized coordinates q; are sufficient to
describe the state of the system. The mixed collective potential is evaluated as

9 = g(qiv t) (92)

and the rate of dissipation expressed in generalized coordinates is

fn Te*d0 =3 Rdj+2D 9.3)
where
R=[Sa%w p-[awm 9.4)
The virtual dissipation is then
] Tas*dn =3 (» +——) 9.5)
The virtual work of the inertia forces is approximated as
S 1sgi= n;%(pd,)aa, i =Ssq (pu,)éﬂdﬂ 9.6)
Hence the generalized inertia is
= [ Seunidan. 0.7

special care must be exercised in evaluating the variation 3% = §z® since the variational
principle assumes that the normal components of 6M/ and 85, are zero at the boundary of 0 a
condition which is not obeyed by using expressions (9.1) in evaluating the variations. Hence
M} and 8S; are now discontinuous at the boundary and the terms containing SM* and &8s are
infinite and yield a finite contribution at this boundary. This contribution is easily evaluated by
integrating by parts. We derive

i i & k
5P usP= %(%‘Jq;-t-z L 8 S (ﬁ%+ 0%)::;&4 9.8)

where A is the boundary of the initial domain and #, its unit outward normal.
Finally the virtual work of the surface tractions f; per unit initial area is

sw:j f,au,dA-zsq.f f,f-‘ﬁdA ©99)

Substitution of expressions (9.5), (9.6), (9.8) and (9.9) into the variational principle (5.11) with
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arbitrary variations &q; yields the Lagrangian equations

D o2 _
L+R+50+52=0 ©.10)
where
a=] (s (13 -3 o i’-‘-’L aj:n,) dA ©0.11)

is a mixed mechanical and thermodynamic driving force which represents the effect of the
environment. Equations (9.10) are in the same form as derived from the general Lagrangian
thermodynamics|3, 6, 8, 9].

When the effect of entropy produced, on the state variable, is not negligible we may
introduce additional generalized coordinates g} and write

s* = s*(qi x, 1). 6.12)

The unknowns gq; are now included in the Lagrangian equations (9.10). Additional equa-
tions for g} are then obtained by writing eqn (6.13)

Ts* = i Rk, +29 9.13)

at suitably chosen points equal in number to the number of additional coordinates g;.

We may also express the generalized inertia force I; approximately by means of the kinetic
energy as follows. We integrate eqn (9.6) with respect to time assuming the variations to vanish
at the limits of integration. We derive

i
> f Isq dt = - f dt L pigdil; Q2. 9.14)
t t
We denote by

7=1 f piigiy 402 9.15)
0

the approximate kinetic energy and by 87 the variation of  due only to the variation of i
Equation (9.14) may then be written

O PR P TC A KA P

This relation being valid for arbitrary variation 8q; implies

d (39\ _aT

=g (aq,) o ©.17)

The derivative 3974q; is evaluated by assuming p independent of g;. With this value of I; the
Lagrangian equations (9.10) are written

d (32\_o2 D _ P _
dt(aq.) E RS T Pl (9.18)

10. APPLICATION TO BIOLOGICAL SYSTEMS

Biological systems are open deformable systems exchanging matter work and energy with
the environment, while chemical reactions coupled to thermomolecular diffusion occur inter-
nally. Such systems of considerable complexity are eminently suited to a simplified description



902 M. A. Bior

by generalized coordinates whose evolution obeys the Lagrangian equations (9.18). In particular
this Lagrangian formulation has been applied by the author to biological membranes with active
transport (6]. Theories developed by Katchalsky[18] and others are shown to be considerably
simplified by the Lagrangian formulation which in addition attains a high degree of generality.
The example treated provides an excellént illustration of the power of the method by providing
an easy evaluation of the coupling eoefficients between external flows through the membrane as
influenced by coupled internal chemical reactions. The phenomenon is called active transport
because some of the flows occur against the concentration gradient.

11. FINITE ELEMENT METHODS

The Lagrangian formulation provides the foundation of a large variety of finite element
methods, choosing as generalized coordinates, values of the field variables at the vertices of a
lattice dividing the continuum into finite elements. Equations (9.1) and (9.12) may then be
considered as interpolation formulas giving the values of the field in the finite elements or in
small groups of such elements. All kinds of interpolation formulas may be used, such as linear
quadratic or others, leading to a large variety of techniques.

12. APPLICATION TO PLASTICITY AND ANALOGY WITH CHEMICAL REACTIONS
A natural extension of the technique of internal coordinates as introduced by the author[1-
3] was applied to describe plastic properties{3]. It is of interest to point out that this may be
achieved by including in the virtual dissipation terms of the type

Tas* = %,:Sq., (12.1)

where 8qy is the variation of an internal plastic strain due to dislocation motion and Rj; is a
function of the local state and gy The variables g, are treated as internal generalized plastic
coordinates. Comparing with expression (5.26) the analogy with chemical reactions is obvious
and R; is the tensor equivalent of the affinity R,.

13. PHASE CHANGES AND CRYSTALIZATION UNDER STRESS

When the solid contains small crystal grains it may be approximated as a continuum. The
state of an element of this continuum may then be defined by the external variables and by a
large number of generalized internal variables which describe the microthermodynamic state of
the element. These variables may correspond to crystal geometry, local strains and tempera-
tures. There may also be present a number of different phases containing each a certain number
of pure substances. The cell potential may then be expressed in terms of these external and
internal variables, and the rate of dissipation in terms of these variables and their time
derivatives. Application of the principle of virtual dissipation to this case yields field equations
of the same type as (6.12) including the internal coordinates of the microthermodynamics.
Creep may result due to crystals dissolving at some points and recrystalizing at others, because
of disequilibrium in the microthermodynamics.

14. APPLICATION TO POROUS SOLIDS

The foregoing resuits are applicable to a large category of porous solids when the motion of
the pore fluid relative to the solid may be treated thermodynamically as a diffusion. This
problem has been discussed in more detail earlier[8].

15. HEREDITY AS A RESULT OF THE PRESENCE OF INTERNAL COORDINATES
The variational principle applied to a system with internal coordinates yields for the
response of external coordinates a response which exhibits heredity. This approach was
initiated for linear viscoelasticity in 1954[1] and extended to non linear viscoelasticity(3, 19].
Equations (4.24) for the response of a deformable cell govern a system where the heredity is the
result of internal chemical reactions. With quasi reversible reactions (4.27) it behaves as a
nonlinear viscoelastic solid (3].
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16. SOLID UNDER INITIAL STRESS

A particular case of the present theory is that of a solid in thermodynamic and mechanical
equilibrium under initial stress. Small departures from equilibrium are then considered, with
small displacements and small perturbations of the thermodynamic variables, including ther-
momolecular diffusion and chemical reactions. The problem has been analyzed in detail [9]) and
constitutes a direct application of the linear thermodynamics developed already in 1954-55[1,
2]. A considerable simplification results in this case due to the fact that sy, the entropy due to
thermal convection, is a state variable replacing the cell entropy &. It is also important in this
case to use the definition (4.1) of the strain or definitions of the type (4.7). Green’s tensor (4.2) is
not suitable because it leads to spurious complications. The theory of initially stressed solids,
for isothermal or adiabatic deformations without chemical reactions or molecular diffusion, was
treated extensively in a monograph[13]. Note that the problem is not treated as a bifurcation
but as a small deviation from an equilibrium state. The theory is therefore more general since
no reference is required to an originally unstressed state which may not exist physically.
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